Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

N-(4-Methoxyphenyl)quinoline-2-carboxamide

Jian Ying Qi, a,b* Li Qin Qiu,b Qi Yun Yang,^a Zhong Yuan Zhou^b and Albert S. C. Chan^b†

^aDepartment of Chemistry, Changsha University of Electric Power, Changsha, Hunan, People's Republic of China, and ^bDepartment of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People's Republic of

† Additional correspondence author, email: bcachan@polyu.edu.hk.

Correspondence e-mail: bcqijy@polyu.edu.hk

Key indicators

Single-crystal X-ray study T = 294 KMean $\sigma(C-C) = 0.002 \text{ Å}$ R factor = 0.042wR factor = 0.111 Data-to-parameter ratio = 16.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The quinolyl and phenyl rings in the title compound, $C_{17}H_{14}N_2O_2$, are almost coplanar. There is an intramolecular hydrogen bond between the quinoline N atom and the amide N atom $[N \cdots N = 2.6602 (17) \text{ Å and } N - H \cdots N = 112^{\circ}].$

Received 8 November 2002 Accepted 4 December 2002 Online 24 December 2002

Comment

We have previously reported the structure of the bidentate ligand (R)-N-(1-phenylethyl)quinoline-2-carboxamide (Yang et al., 2001). The quinolyl and phenyl rings in that compound form a dihedral angle of 89.07 (5)°, while the corresponding rings in the title compound, (I), are coplanar. It is predicted that the N atom of the quinoline ring and the amide N atom or carbonyl O atom will coordinate to a metal ion and form a complex with a five-membered ring structure. There is an intramolecular hydrogen bond between the quinoline N atom and the amide N atom $[N2 \cdots N1 = 2.6602 (17) \text{ Å}$ and N2— $H2A \cdot \cdot \cdot N1 = 112^{\circ}$]. The structure of N-(4-iodophenyl)quinoline-2-carboxamide is reported in the following paper (Qi et al., 2003).

Experimental

The title compound was synthesized from 2-quinolinecarboxylic acid and 4-methoxyaniline according to the general procedure of Johnson et al. (1960). The crystal used for the data collection was obtained by slow evaporation of a saturated DMF-H₂O solution of (I) at room temperature.

Crystal data

 $C_{17}H_{14}N_2O_2$ $D_x = 1.340 \text{ Mg m}^{-3}$ $M_r = 278.30$ Mo $K\alpha$ radiation Monoclinic, $P2_1/n$ Cell parameters from 3598 a = 6.6372 (11) Åreflections b = 18.109 (3) Å $\theta=1\text{--}27.5^\circ$ $\mu = 0.09 \text{ mm}^{-1}$ c = 11.4921 (19) Å $\beta = 92.867 (3)^{\circ}$ T = 294 (2) K $V = 1379.6 (4) \text{ Å}^3$ Prism, colorless $0.38 \times 0.28 \times 0.26 \text{ mm}$

Data collection

Siemens SMART CCD area-3167 independent reflections detector diffractometer 1829 reflections with $I > 2\sigma(I)$ φ and ω scans $R_{\rm int} = 0.034$ Absorption correction: multi-scan $\theta_{\rm max}=27.5^\circ$ (SADABS; Sheldrick, 1996) $h = -8 \rightarrow 8$ $T_{\min} = 0.967, T_{\max} = 0.977$ $k = -13 \rightarrow 23$ 9204 measured reflections $l = -14 \rightarrow 14$

DOI: 10.1107/S1600536802022420

© 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

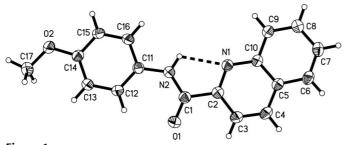


Figure 1
The molecular structure of (I), showing ellipsoids at the 30% probability level (Siemens, 1995).

Refinement

Refinement on F^2 $w = 1/[\sigma^2(F_o^2) + (0.05P)^2]$ $R[F^2 > 2\sigma(F^2)] = 0.042$ $where <math>P = (F_o^2 + 2F_c^2)/3$ $wR(F^2) = 0.111$ $(\Delta/\sigma)_{\max} < 0.001$ S = 1.01 $\Delta\rho_{\max} = 0.15 \text{ e Å}^{-3}$ 3167 reflections $\Delta\rho_{\min} = -0.17 \text{ e Å}^{-3}$ Extinction correction: SHELXL97 H-atom parameters constrained Extinction coefficient: 0.020 (2)

Table 1 Hydrogen-bonding geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
N2−H2 <i>A</i> ···N1	0.86	2.21	2.6602 (17)	112

The C-bound H atoms were placed in geometrically calculated positions and included in the final refinement in the riding-model approximation. The H atom on N2 was initially refined but was constrained in the final refinement.

Data collection: *SMART* (Siemens, 1995); cell refinement: *SMART*; data reduction: *SHELXTL-NT* (Siemens, 1995); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *SHELXTL-NT*; software used to prepare material for publication: *SHELXTL-NT*.

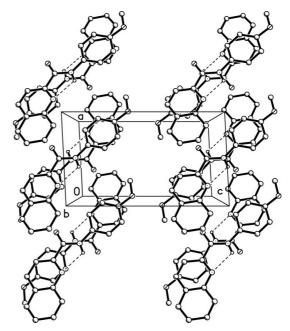


Figure 2 The molecular packing along the b axis.

The Hong Kong Polytechnic University ASD fund and the National Natural Science Foundation of China (D20063002) are thanked for their financial support of this study.

References

Johnson, W. A., King, T. J. & Turner, J. R. (1960). J. Chem. Soc. pp. 1509–1511.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXTL97. University of Göttingen, Germany.

Qi, J. Y., Qiu, L. Q., Yang, Q. Y., Zhou, Z. Y. & Chan, A. S. C. (2003). Acta Cryst. E59, o104–o105.

Siemens (1995). SMART (Version 5.0) and SHELXTL-NT (Version 5.10). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Yang, Q. Y., Zhou, Z. Y. & Qi, J. Y. (2001). Acta Cryst. E57, 0971–0972.